Study of a Micro Hollow Cathode Discharge at medium argon gas pressure

Claudia LAZZARONI
Antoine ROUSSEAU
Pascal CHABERT
LPP
Ecole Polytechnique, Palaiseau, FRANCE

Nader SADEGHI
LSP
Grenoble, FRANCE
I-V characteristic

Aubert et al., PSST 16 (2007) 23–32
Example of a 2D simulation

L. PITCHFORD, K. MAKASHEVA (LAPLACE, Toulouse)
Geometry of the system

- CATHODE REGION
- POSITIVE COLUMN
- ANODE REGION
- Molybdenum
- Alumina

Dimensions:
- 150 µm
- 250 µm
- 400 µm
Geometry of the system
Geometry of the system

CATHODE REGION

POSITIVE COLUMN

ANODE REGION

Sheath
Geometry of the system
Geometry of the system
Setup for spectral measurements

- Cathode
- Anode
- $f' = 30\, \text{mm}$
- Filter
- Monochromator
 - $f' = 2\, \text{m}$
 - 1200 g/mm
 - Spatial resolution = 2 µm
- CCD
- Reflection gating
- Mirrors

Laboratoire de Physique des Plasmas
Pressure influence

- Two origins for the light emission:
 - in the centre
 - near the edges

- Leads:
 - centre \rightarrow recombination
 - Edge \rightarrow excitation by high energy electron emitted from the cathode
Study of the cathodic region

![Diagram showing the cathode region, positive column, and anode region with dimensions and materials labeled.](image-url)
Calculation of the sheath thickness (d)

- One-dimensional cylindrical geometry:

\[\Gamma_i(R - d) = \xi \Gamma_i(R) \]
\[\Gamma_i(R) \]
\[\Gamma_e(R - d) \]
\[\Gamma_e(R) \]

Cathode

Sheath

\[\vec{\nabla} \Gamma_e = \alpha(r) \Gamma_e \]
Calculation of the sheath thickness (d)

\[\Gamma_i(R - d) = \xi \Gamma_i(R) \]

P (Torr)

Distance from the cathode (µm)

\(T=470K \)

Laboratoire de Physique des Plasmas
Calculation of the sheath thickness (d)

Distance from the cathode (µm)

Ar line maximum

Ar$^+$ line maximum

T=470K
Calculation of the sheath thickness (d)

- decrease of the sheath size with the increase of ξ
- maxima of both emission lines located after the sheath edge whatever the value of ξ
- same trends for the evolution of d that of the maxima of the emission line
- the sheath edge coincide with the maxima of the ionic line

T=470K
1D stationary model of the cathodic region
1D stationary model of the cathodic region
Model description

• 3 species: e^-, Ar^+, Ar_2^+

• 3 reactions:

\[Ar + e^- \rightarrow Ar^+ + 2e^- \quad (K_{iz}) \]
\[2Ar + Ar^+ \rightarrow Ar_2^+ + Ar \quad (K_1) \]
\[Ar_2^+ + e^- \rightarrow Ar^* + Ar \quad (K_{rec}) \]

• Numerical tool: MATLAB
Governing equations

• Set of equations:
 – Quasi-neutrality: \(n_e = n_{Ar^+} + n_{Ar_2^+} \)
 – Continuity equation: \(\frac{d\Gamma_i}{dr} = P - L - \frac{\Gamma_i}{r} \)
 – Momentum conservation (drift-diffusion): \(\vec{\Gamma}_i = n_i \mu_i \vec{E} - D_i \nabla n_i \)

\(\rightarrow \) no energy equation: we need to give us a \(n_e \)

• Boundary conditions
 – Integration until the entrance of the sheath (to respect the electroneutrality)
 – Shooting method: ions speed value at the sheath edge \(\rightarrow T_e(r) \)
Ionization rate shape

Emission intensity of Ar\(^+\) line \(\alpha \nu_{iz}\)

100 Torr

\(\nu_{iz}\) (10\(^6\) s\(^{-1}\))

Radial position (mm)

Radial position (mm)

Intensity (arb. u.)

Ar\(^+\) line
Ionization rate shape

Emission intensity of Ar$^+$ line $\alpha \nu_{iz}$

Radial position (mm)

30 Torr
50 Torr
100 Torr
150 Torr
200 Torr

$\nu_{iz} \left(10^6 \text{s}^{-1}\right)$
Electron temperature

\[T_e (eV) = \frac{E_{i0}}{\log(\frac{v_{i0}}{v_{iz}})} \]

\[E_{i0} = 17.44 \text{ eV} \quad \text{and} \quad v_{i0} = K_{iz0} \times n_g = 5.10^{-14} \times 3.2 \times 10^{19} \times 1000 \times P(\text{Torr}) \]
Conclusions of the cathodic region

- Sheath structure
- Radial profile of densities: $n_e(r)$ has to be confirmed experimentally
- Lack on a theoretical point of view:
 - Non linear model \Rightarrow need of $n_e \Rightarrow$ power balance

Power balance complicated in the cathodic region but not in the positive column \Rightarrow easier study of this region

- Sheath negligible
- Electric field uniform \Rightarrow power balance possible
- Instationary model
Study of the positive column

CATHODE REGION

alumina

 POSITIVE COLUMN

ANODE REGION
1D stationary model of the positive column
Model description

• same species: \(e^-, Ar^+, Ar_{2}^+ \)

• same reactions:

\[
\begin{align*}
Ar + e^- & \rightarrow Ar^+ + 2e^- \\
2Ar + Ar^+ & \rightarrow Ar_{2}^+ + Ar \\
Ar_{2}^+ + e^- & \rightarrow Ar^* + Ar
\end{align*}
\]

• same equations:
 – Quasi-neutrality
 – Continuity equation
 – Momentum conservation
 – Ionization rate constant: \(v_{iz}=cte \)
Species density

n_0 given

Radial position (mm)
Electron temperature

![Graph showing electron temperature vs. pressure (Torr)]
0D non-stationnary model of the positive column

CATHODE REGION

POSITIVE COLUMN

ANODE REGION

sheath
0D non-stationary model of the positive column
0D non-stationnary model of the positive column
Governing equations

PARTICLE CONSERVATION

Fluid equation

\[
\frac{\partial n_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r n_e \right) = \nu_{iz} n_e
\]

Integration over the space coordinates (between 0 and R)

Balance equation

\[
\frac{dn_0}{dt} = \nu_{iz} n_0 - h_R u_B n_0
\]

with

\[
h_R = \frac{\chi_{01} J_1(\chi_{01})}{Ru_B} D_a
\]

Same equations for the ionic species
Edge-to-centre density ratio h_r

![Graph showing edge-to-centre density ratio h_r as a function of pressure (Torr). Curves for $h_r(Ar^+)$ and $h_r(Ar_2^+)$ are depicted, with data points indicating a non-stationary model.]
Governing equations

- Energy balance:
 \[
 \frac{d\left(\frac{3}{2}n_e e T_e\right)}{dt} = P_{abs} - P_{loss}
 \]

- System of 3 temporal equations with \(n_e\), \(n_\text{Ar}_2^+\) and \(T_e\):
 \[
 \begin{align*}
 \frac{dn_e}{dt} &= v_{iz} n_e - K_{rec} n_e n_\text{Ar}_2^+ - \frac{A}{V} \chi_{01} \Gamma_e \\
 \frac{dn_\text{Ar}_2^+}{dt} &= K_1 n_\text{Ar}^+ n_\text{Ar}_2^+ - K_{rec} n_e n_\text{Ar}_2^+ - \frac{A}{V} \chi_{01} \Gamma_\text{Ar}_2^+ \\
 \frac{dT_e}{dt} &= \frac{2}{3} \left(P_{abs} - P_{loss} \right) - \frac{T_e}{n_e} \frac{dn_e}{dt}
 \end{align*}
 \]

- Electric field: \(E = f(I, n_e)\)
Temporal evolution of the densities

\[n_e/n_0 \]

\[t (\mu s) \]

I=1mA

Post-discharge: I=0

200 Torr

150 Torr

100 Torr

50 Torr

30 Torr
Densities temporal evolution

- n_{e}
 - 200 Torr
 - 150 Torr
 - 100 Torr
 - 50 Torr
 - 30 Torr
- n_{Ar^+}
 - 50 Torr
 - 100 Torr
 - 150 Torr
 - 200 Torr
 - 30 Torr
- $n_{Ar_2^+}$
 - 200 Torr
 - 150 Torr
 - 100 Torr
 - 50 Torr
 - 30 Torr
Electron temperature and reduced field temporal evolution
Summary

- Cathodic region:
 - Experimental results
 - Ar$^+$ emission: direct excitation by energetic beam electrons
 - Ar emission: direct excitation + recombination argon/e$^-$
 - Theoretical results
 - Ionizing-sheath model → sheath structure
 - 1D transport model → density and flux profiles
 BUT $n_e =$ input parameter (complexity of the power balance)

- Positive column
 - Stationary model: density and flux profiles, $T_e(P)$ and $h_r(P)$
 - Non-stationary model: power balance easy → $n_e =$ output parameter → temporal evolution of the different parameters (n, T_e, E/N, …)

Next step

- Experiment: same experimental measurements temporally resolved during the self-pulsing regime
- Theory: - input parameter of the 0D model = experimental discharge current
 - power balance in the cathodic region
 - introduction of the metastables
Comparison between the two models

Good agreement between the two models
Comparison between the two models

Good agreement between the two models

Laboratoire de Physique des Plasmas