Mesures pompe-sonde pour le diagnostic des plasmas laser créés lors de la nanostructuration des matériaux

R. STOIAN
LaHC, Saint Etienne, France

-Laser technologies
-Carrier plasmas
-Pump-probe review
-3D structuring
Laser processing

Micro and Nano fabrication

- Key technological issue in manufacturing
2D surface engineering

Fabrication

- Drilling
- Functional Microstructures
- Tribology
- Mechanics
- Electronics
- etc.....
3D optical functions

Fabrication

• Embedded optical elements
• Embedded lasers
• Photonic crystals
• Quantum information
• Optofluidics
• Astrophotonics
• etc.....

Watanabe OE 2002
Marshall OL 2008
Szameit OE 2006
Sansoni PRL 2010
Cheng & Sugioka 2006
Thomson OE 2011
laser irradiation: enabling tool

Master the process via fundamental knowledge

Probing laser processes - a review of ultrafast probing
Material functions

Fabrication

• Involve lasers

But which lasers?
Long versus short pulses

Long pulse

\[P = \frac{E}{\tau} = \frac{1\text{mJ}}{100\text{ fs}} = 10GW \]

Short pulse

femtosecond

\[P = \frac{E}{\tau} = \frac{1J}{10\text{ fs}} = PW \]

Clark-MXR web site
Long versus short pulses

- **1 watt** = 10^3 W
- **1 kilowatt** = 1 W
- **1 megawatt** = 10^6 W
- **1 gigawatt** = 10^9 W
- **1 terawatt** = 10^{12} W
- **1 petawatt** = 10^{15} W

High intensities (comparable with atomic fields)

- **Electron Motion**
- **Molecular Rotation /Vibration**

- **10^{-15} sec** (femto)
- **10^{-18} sec** (atto)

- **Electric bulb**
- **Electric cooker**
- **Car**
- **Flashlight**
- **Bomb**
- **Laser**
Laser action

Laser structuring = consequence of laser ablation

Energy coupling
Heating
Transformation
Ablation

CAN THIS BE CONTROLLED?
(achieve upgrade beyond the material limits?)

What is happening to the material: optically, structurally
Process dynamics

Laser ablation

Initial state

Excitation

Change

Probe

E. Mazur, Harvard University
Dynamics

in 1878

Optical stroboscopy
10^{-1} to 10^{-3} seconds.

Ref. Eadweard Muybridge 1878
Dynamics

Optical stroboscopy
10^{-1} to 10^{-3} seconds.

Ultrafast spectroscopy by pulsed laser pump probe 10^{-10} to 10^{-15} s

Ref. Eadweard Muybridge 1878

Molecular motion in real time
Laser-matter interaction

• How is the laser energy deposited in materials?

 • ELECTRONS (CARRIER PLASMAS)
 • (confined in condensed matter)
3D nonlinear excitation: ultrafast laser pulses

- Inv. Bremsstrahlung
- Multiphotonic PHOTOIONIZATION
- COLLISIONAL Avalanche

E_{fs}
Electron on a spring with position $x_e(t)$, and driven by a light wave, $E_0 \exp(-i\omega t)$:

$$m_e \frac{d^2 x_e}{dt^2} + m_e \omega_0^2 x_e = eE_0 \exp(-i\omega t)$$

The solution is:

$$x_e(t) = \left[\frac{e / m_e}{\left(\omega_0^2 - \omega^2 \right)} \right] E_0 \exp(-i\omega t)$$

Infinite amplitude at $\omega = \omega_0$
Free electrons

\[x_e(t) = \left[\frac{-e/m_e}{\omega^2 + i\omega\gamma} \right] E(t) \]

Energy stays constant \(E_{\text{kin}} = E_{\text{pot}} \)
no absorption on free electrons
(no energy and momentum conservation)

Energy varies because of collisions
ABSORPTION

R. Trebino Georgia Tech
3D nonlinear excitation: ultrafast laser pulses

Drude model

\[\epsilon^*_\omega = \epsilon_0 \left(\frac{N_e}{N_{cr}} \right) \frac{1}{1 + i \frac{1}{\omega \tau}} = \epsilon_r + i \epsilon_i \]

\[N_{cr} = \epsilon_0 m^*_e \omega^2 / e^2 \]

\[\text{Re} \left[\epsilon^*_\omega \right] = 0 \]

DEPOSIT ENERGY

ELECTRON DENSITY

RFLECTION

No coll

Coll=fs
3D nonlinear excitation: ultrafast laser pulses

Result: refractive index change
Nonlinear excitation: ultrafast laser pulses

Microexplosions: New matter states

Self-organization

Index changes: waveguides
Excitation of carrier plasmas

Q1: Ionization/Excitation
Optical dynamics:

Changes in optical properties
- Reflectivity
- Absorbivity

Example 1: Coherent vibrations

Energy coupling

Lattice: Vibration to heat

E. Mazur, Harvard University
Digital holography

\[n^* \approx n_0 - \frac{N_e}{2N_{cr}} \frac{1}{1 + \left(\frac{1}{\omega \tau} \right)^2} \]

\[k^* \approx \frac{N_e}{2N_{cr}} \frac{1}{1 + \left(\frac{1}{\omega \tau} \right)^2} \]

Interferogram

Phase: \(\phi \)
Amplitude: \(T \)
Ionization of carrier plasmas in dielectrics

\[\frac{dN_e}{dt} \sim I^n \]

\[\frac{N_e}{m_e} \]
Excitation of carrier plasmas

Q2: Relaxation
Spectral interferometry

\[n^* \approx n_0 - \frac{N_e}{2N_{cr}} \frac{1}{1 + (1/\omega \tau)^2} \]

Spectral fringes

\[\Delta \Phi(t) = \frac{2\pi}{\lambda} \int_0^L \Delta n(l, t) \cdot \, dl \]
Optical dynamics: time-resolved ellipsometry

Changes in optical properties
- dielectric function
 \(\text{Re}(\varepsilon) \) via Fresnel eq.
 \(\text{Im}(\varepsilon) \)

Phase transitions

SOLID TO LIQUID

1 ps

GaAs

1.7 kJ/m²
Time-domain techniques

THz waves
THz time-domain spectroscopy

Razvan Stoian

M. Bonn, T. Heinz, MIT
Transient gratings: ultrafast laser pulses

Similarly:
- plasma waves (conserve k)

Diffraction depends on modulation contrast

Temnov OE 2009
Light conversion

- Generation of frequencies and phase matching

\(\chi^2 \) sensitive to crystalline anisotropy

In glasses? Electronic gradients

SOLID TO LIQUID

Beresna et al APL 2009

\[\bar{P}(2\omega) = \chi_{\text{fe}}(2\omega) \left[2 \nabla E^2 / 2 + 2 \bar{E} (\nabla \cdot \nabla \ln n_e) / \bar{\varepsilon} \right] \]

Tom et al PRL 1998

SH generation
Excitation of carrier plasmas

Q3: Material ejection
Material removal: ultrafast laser pulses

Laser

Photoemission

Electron depleted region

Electron excited region

drift-diffusion transport

Photoemission

Coulomb explosion

R. Stoian PRL 2002
Material removal: ultrafast laser pulses

decay of excitation

$\Delta \tau$
Material removal: ultrafast laser pulses

DIELECTRICS
- electrostatic ion emission

METALS
- thermal

COULOMB EXPLOSION (CE)

\[\frac{p(O^+)}{p(Al^+)} \]

NUMBER OF PULSES

NORMALIZED YIELD

TIME [ps]

Razvan Stoian

R. Stoian PRL 2002
Excitation of carrier plasmas

Q4: Internal energy; Scattering, plasma radiation
Energy of plasmas: ultrafast laser pulses

Simulation codes

Electron heating Lattice heating Hydrodynamic expansion

Plasma surdense
$10^{21} < N_e < 10^{23} \text{ cm}^3$

Chauffage électronique

Gaz

Liquide

Fusion

Solide

Densité (g cm^{-3})

Comobier PhD 2005 CEA
Energy of plasmas: ultrafast laser pulses

Properties:
- density
- structure
- temperature

Proton scattering

Front evolution

Various labs: SLAC, DESSY, Los Alamos, CEA, Berkeley
Ablation pulses: ultrafast laser pulses

Nanoparticles

Shock (schlieren & shadowgraphy)
\(\frac{dn}{dx} \) \(\frac{d^2n}{dx^2} \)

Properties:
- acoustic
- optical
- luminescence
- electrical
- structural
- waves
- ions (core level)

Luminescence and excitation temperature
\[I_\lambda \sim e^{-E/kT} \]

Amoruso APL 2009
Hermann JAP
Lippert JAP 2010
Car GE 2005
Challenge: dynamics of the surface movement?
Optical methods:
- visualizing surface modulation

Time-resolved diffraction?
The interest?

What is happening with the material

- changes in the dielectric function: OPTICAL
- changes in the structure: THERMODYNAMIC
- changes in the shape: FUNCTION
Monitoring and control of carrier plasmas

Q5: Carrier dynamics

Ex: Application to 3D structuring
3D nonlinear excitation: ultrafast laser pulses

Result: refractive index change
3D material modifications

refractive index Δn

- Building block of embedded optical functions

Light guiding
Davis et al OL 1996
Energy density regimes: a-SiO$_2$ Phase contrast

NA: 0.45 - 150 fs

Black $\Delta n > 0$ enables guiding - core
White $\Delta n < 0$ defines guiding - cladding

Razvan Stoian
Type I regime: a-SiO$_2$

Phase contrast

- NO STRONG POLARIZATION SENSITIVITY
- ISOTROPIC OPTICAL GUIDING
- LOW LOSSES <0.5dB/cm

Optical functions

Type I
$\Delta n (10^{-4} - 10^{-3})$

V-inj

H-inj

100 nJ

Razvan Stoian
3D photonic structure

Mauclair et al. OE 2009
Role of polarization: a-SiO$_2$

Energy

PCM WAVEGUIDE IMAGE

Type I - Isotropic guiding

Type II - WG Polarization sensitive

Guiding only here
Anisotropic regimes: a-SiO$_2$

- Birefringent regions
- Type II
- Core $\Delta n > 0$
- $\lambda/2n$ - controllable

Guiding when E is parallel to the planes
Cladding: form birefringence

Polarization function

Shimotsuma PRL 2003
Bhardwaj PRL 2006

Cheng et al. OE 2009, 2010

Razvan Stoian
Optical functions: a-SiO$_2$

- Polarization maintaining waveguides
- Birefringent phase retardation properties

Quarter Wave Plate

Razvan Stoian

Mishchik et al. OE 2010
Refractive index changes

Local modification

Can this be improved (controlled)?
Refractive index changes a-SiO$_2$

SINGLE PULSE EFFECT (N=1): a-SiO$_2$

Q1: How is the energy distributed?
Q2: How does the material react?
Refractive index changes

Q: How is the energy deposited?
Nonlinear pulse propagation

NLSE-Schrödinger
E-field propagation
- self-focusing and self-phase modulation
- plasma generation
- filamentation
Pulse evolution: sequential energy deposition

INTENSITY

TIME [ps]

DEPOSITED ENERGY DENSITY [J/cm³]

FOCUS

z [µm]

Thermo-elasto plastic model (dynamic elasticity)

Material deformation

Accumulation of energy (expansion & rarefaction)

Razvan Stoian
Refractive index changes a-SiO$_2$

Q2: how does the material react?
Pump-probe apparatus: time-resolved microscopy

Excitation and relaxation dynamics

MODES:
- Phase contrast (PCM)
- Optical transmission (OTM)
Refractive index changes a-SiO$_2$: time-sequence

- Fast plasma decay (low excitation)
- Persistent absorptive zone (ns)
 - electrons?
 - liquid phase?
 - defects?
- But not permanent

Matrix response
Thermo-mechanics

Razvan Stoian
Refractive index changes a-SiO$_2$: electrons

- Residual absorption can be linked to defects

- But also to free electrons in liquid phase where trapping is not efficient (indication of a «phase transition»)
Comparison short & long pulses 6.2µJ, NA=0.45

160fs pulse

3ps pulse

Focal region
Refractive index changes a-SiO₂: electrons

150 fs

3 ps

Delayed plasma
-less defocusing

Better absorption and confinement
Comparison fs/ps, single pulse irradiation

- Pressure wave
- ps pulse – Stronger amplitude of the PW
Electronic transitions a-SiO$_2$: spectra

N=1

a) Electron plasma at peak

b) Permanent damage

c) Oxygen deficiency centers
Slow el. decay

d) Non-bridging oxygen
(Fast el. decay)
Refractive index changes a-SiO$_2$: stress

Slow relaxation

Slow Δn Dynamics

-stress relaxation

Mermillod-Blondin et al. RSI 2011
Refractive index changes

Q5: the energy density is important

Energy density is important!!!
- regulates the physical excitation
- determines relaxation paths
Modulated refractive index changes

Q: How controllable is the nanoscale pattern?
Nano-control via diffraction feedback: \(\text{a-SiO}_2\)

Control via electronic excitation

Mauclair et al. OE 2012
Nano-control via diffraction feedback: a-SiO$_2$

Controllable Periodicity

Controllable arrangement

Linear chirp, symmetric stretching

Mauclair et al. OE 2012
Nano-control via diffraction feedback: a-SiO$_2$

Electron density

Non monotoneous N_e -max 0.6ps

Mauclair et al. OE 2012
Nanostructuring hypothesis: a-SiO$_2$

Plasmonic hypothesis?

$$\Delta = \frac{\lambda}{\sqrt{\frac{\varepsilon_r + 1}{\varepsilon_r}}}$$

$$\varepsilon_r = \varepsilon_{r0} - \frac{N_e}{N_{cr}}$$

Shimotsuma et al. MPL 2005
Nanoscale control

Transition Order-Disorder on polymers

150 fs

2 ps

Forster JPPC 2011
Possible applications

What do we want to achieve?

- Flexibility in designing laser-interaction
Its all about the electrons

Process control
thanks to:

LHC, St. Etienne MBI, Berlin NIFLRP, Bucharest IT, Novosibirsk
C. Mauclair A. Mermillod M. Zamfirescu I. M. Burakov
G. Cheng A. Rosenfeld XIOPM, XiAN N. M. Bulgakova
K. Mishchik I. V. Hertel G. Cheng Y. Meschcheryakov
E. Audouard

Max-Born-Institut